

工业硅基础知识

创元期货研究院 有色新能源组

汇报人: 余烁

汇报时间: 2024/07/26

1.1 工业硅定义

- ◆ 硅是呈灰色金属光泽的半金属,在元素周期表中属IVA族,元素序号14,元素符号为Si,原子量为28.09。硅是地壳构成中第二丰富的元素,占地壳总质量的26.4%。在自然界中,硅极少以单质的形式存在,而是以复杂的硅酸盐或二氧化硅的形态广泛存在于岩石、砂砾、尘土之中。
- ◆ 工业硅又称金属硅,是由硅石和碳质还原剂在矿热炉内冶炼成的产品,主成分硅元素的含量在98%左右(近年来,含Si量99.99%的也列在金属硅内),其余杂质为铁、铝、钙等。因其用途不同而划分为多种规格,按照金属硅中铁、铝、钙的含量,可把金属硅分为553、521、411、421、3303、3305、2202、等不同的牌号。
- ◆ 工业硅在650°C以下不具有导电性,此时可以用作绝缘材料;超过650°C产生导电性,随着温度升高其导电性不断提高。
- ◆ 工业硅是生产有机硅、多晶硅最重要的原材料,也是铸造铝合金、变形铝合金中的重要原材料。

表:工业硅化学成分(%)

牌号	硅含量Si(≥)	铁含量Fe(≤)	铝含量Al (≤)	钙含量Ca(≤)
Si1101	99.79	0.1	0.1	0.01
Si2202	99.58	0.2	0.2	0.02
Si3303	99.37	0.3	0.3	0.03
Si4110	99.4	0.4	0.1	0.1
Si4210	99.3	0.4	0.2	0.1
Si4410	99.1	0.4	0.4	0.1
Si5210	99.2	0.5	0.2	0.1
Si5530	98.7	0.5	0.5	0.3

数据来源: 国标、创元研究

1.2 工业硅期货合约

表:工业硅期货合约

合约标的物	工业硅
交易单位	5吨/手
报价单位	元(人民币)/吨
最小变动价位	5元/吨
涨跌停板幅度	上一交易日结算价±4%
合约月份	1、2、3、4、5、6、7、8、9、10、11、12月
交易时间	每周一至周五(北京时间 法定节假日除外)9:00~11:30,13:30~15:00, 及交易所规定的其他时间
最后交易日	合约月份的第10个交易日
最后交割日	最后交易日后的第3个交易日
交割品级	见《广州期货交易所工业硅期货、期权业务细则》
交割地点	交易所指定交割库
最低交易保证金	合约价值的5%
交割方式	实物交割
交易代码	SI
上市交易所	广州期货交易所

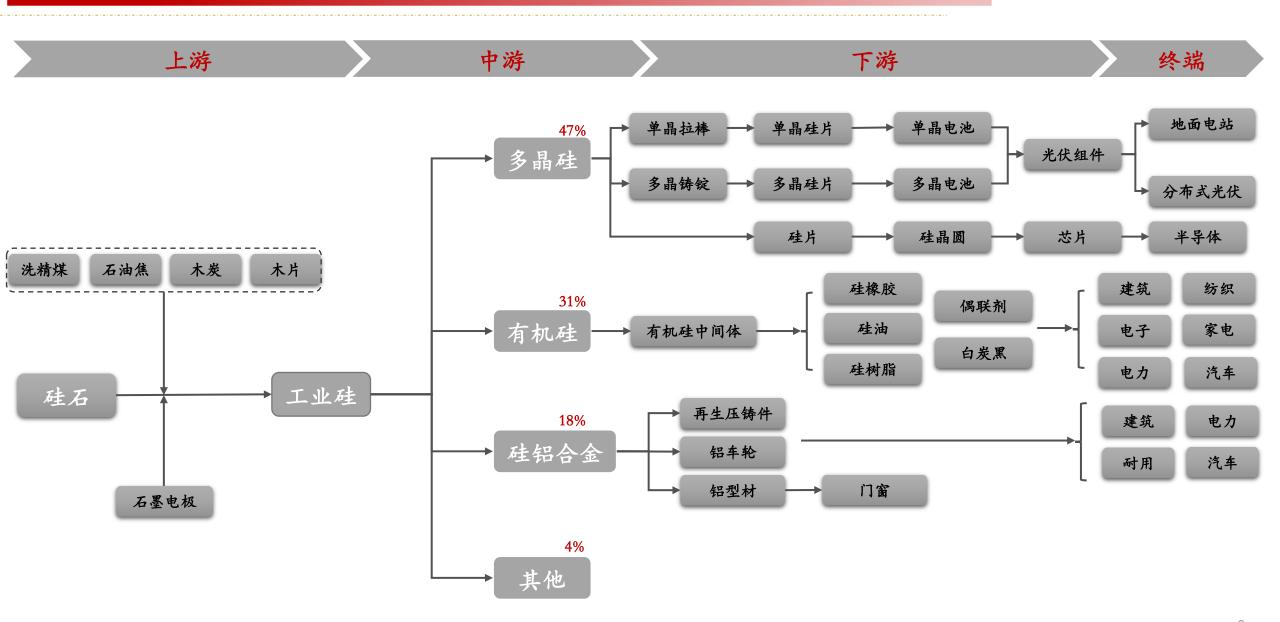
数据来源:广期所

- ◆ 2411合约及之前(旧交割标准)
- ◆ 基准交割品: 达到《中华人民共和国国家标准 工业 硅》 (GB/T 2881-2014) 规定牌号为Si5530 (名义硅 含量≥98.7%、铁含量≤0.50%、铝含量≤0.50%、钙 含量≤0.30%) , 粒度为 $10\sim100$ mm的工业硅 (其中, 粒度偏差筛下物不大于5% , 筛上物不大于5%) 。
- ◆ 替代品及升贴水: 达到《中华人民共和国国家标准工业硅》(GB/T 2881-2014)规定牌号为Si4210(名义硅含量≥99.3%、铁含量≤0.40%、铝含量≤0.20%、钙含量≤0.10%),粒度为10~100mm的工业硅(其中,粒度偏差筛下物不大于5%,筛上物不大于5%);升水2000元/吨。
- ◆ 地区升贴水: 天津市贴水100元/吨, 广东省(广州、佛山)贴水150元/吨, 云南省(昆明)贴水550元/吨,新疆维吾尔自治区中,乌鲁木齐贴水800元/吨、吐鲁番贴水700元/吨、伊犁贴水1050元/吨,四川成都贴水400元/吨、凉山贴水550元/吨

1.2 工业硅期货合约

表:工业硅期货新交割标准

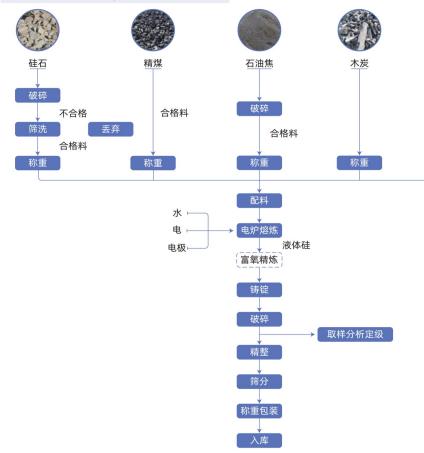
|简称《工业硅国标》) 规定牌号为Si5530(名义硅含 |≤0.50%、铝含量≤0.50%、钙含量≤0.30%、磷含量 |量≥98.7%、铁含量≤0.50%、铝含量≤0.50%、钙含 |≤0.008%、硼≤0.005%、碳含量≤0.04%,粒度为 |偏差筛下物不大于5%,筛上物不大于 5%)。 铝含量≤0.20%、钙含量≤0.10%), 粒度为 |筛上物不大干5%): 升水2000元/吨


第四条 工业硅期货合约交割标准品的质量标准适用国家 |第四条 工业硅期货合约交割标准品的质量标准适用 ||标准及本细则规定。基准交割品:符合《中华人民共和 |国家标准及本细则规定。基准交割品:达到《中华人|国国家标准工业硅》(GB/T 2881-2014,以下简称《工 |民共和国国家标准工业硅》(GB/T 2881-2014,以下 |业硅国标》)的要求,其中名义硅含量≥98.7%、铁含量 |量≤0.30%, 粒度为10~100mm的工业硅(其中, 粒度 |10~100mm硼含量(粒度偏差筛下物不大于 5%, 筛上物不| 大于 5%)。替代交割品及升贴水:符合《工业硅国标》 替代交割品及升贴水:达到《工业硅国标》规定牌号的要求,其中名义硅含量≥99.3%、铁含量≤0.40%、铝 |为 Si4210(名义硅含量≥99.3%、 铁含量 ≤0.40% √含量≤0.20%、 钙含量≤0.10%、磷含量≤0.008%、硼含 量≤0.005%、 碳含量≤0.04%、钛含量≤0.04%、镍含 |10~100mm的工业硅(其中,粒度偏差筛下物不大于5%,|量≤0.015%、铅含量≤0.001%、钒含量≤0.025%,粒度 |为10~100mm(粒度偏差筛下物不大于 5%. 筛上物不大于 5%): 升水800元/吨。

数据来源:广期所

- ◆ 修改点:
- ◆ 交割标准变严格,交割品新增磷、硼、碳等含量要求,替代交割品新增磷、硼、碳、钛、镍、铅、钒,交割品更贴近下游 多晶硅市场需求
- ◆ 替代交割品升水从2000元/吨修改至800元/吨,基准交割品变得更有性价比

1.3 工业硅产业链



1.4 工业硅冶炼工艺

图: 工业硅生产工艺流程

数据来源:广期所

◆ 原料

- 1. 硅石 (石英岩): 选择高纯度的石英岩或硅石, 通常要求SiO2含量在99%以上。
- 2. 还原剂:碳质还原剂,如煤、焦炭或木炭。
- ◆ 冶炼过程

工业硅的冶炼主要在电弧炉中进行,通过高温将硅石还原为硅。主要步骤如下:

1. 电弧炉冶炼:

装料:将石英岩和碳质还原剂按一定比例混合,装入电弧炉中。

加热:电弧炉通过电弧放电产生高温 (通常在1500-2000°C),使硅石与碳发生还原反应。

反应:在高温下,硅石中的二氧化硅与碳反应生成硅和一氧化碳气体。

SiO2+2C=Si+2CO↑

2. 提纯:

酸洗:将初步得到的硅进行酸洗,去除其中的杂质。

气相沉积:通过气相沉积法进一步提高硅的纯度,这种方法在制备电子级硅时常用。

- ◆ 关键技术要点
- 1. 温度控制: 高温是冶炼过程的关键,温度过低无法有效还原硅石,温度过高会导致硅挥发。
- 2. 配料比例: 硅石和还原剂的配比需要精确控制,以确保反应完全,杂质最小化。
- 3. 炉衬材料: 电弧炉的炉衬材料需耐高温且不与硅反应, 常用材料包括镁铬砖和碳化硅砖。
- 4. 环保措施: 冶炼过程中会产生大量废气, 需配备有效的除尘和废气处理系统, 减少对环境的影响。

1.5 工业硅成本

◆ 全煤工艺是指在工业硅冶炼过程中,全部使用煤炭作为还原剂的工艺。非全煤工艺是指在工业硅冶炼过程中,不完全使用煤炭,而是部分或全部使用其他碳质还原剂(如石油焦、木炭、冶金焦等)的工艺。

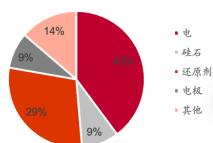
图: 工业硅两种生产工艺比较

特性	全煤工艺	非全煤工艺
还原剂	煤炭	石油焦、木炭、冶金焦等混合还原剂
成本	较低	较高
环境影响	较大	较小
硅的纯度	相对较低	相对较高
工艺复杂度	较低,适用传统电弧炉	较高,可能需改进或特殊设备
适用领域	普通工业用途, 如部分铝合金和化工	高端工业用途, 如高纯度硅材料

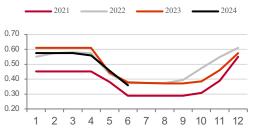
图: 工业硅两种生产工艺单耗

	非全煤工艺	全煤工艺
电耗(kWh)	12000-13000	12000-13500
硅石 (t)	2.7-3	2.65-2.9
洗精煤 (t)	0.45-0.6	1.1-1.2
木炭 (t)	0.5-0.95	-
石油焦 (t)	0.8-1	-
木块 (t)	0.3-0.68	0.5-0.85
电极 (t)	0.06-0.1	0.07-0.1
合计	-	-

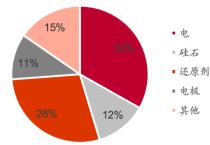
1.5 工业硅成本

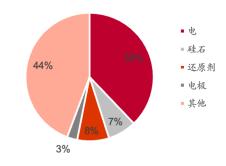

表:工业硅主产区6月成本模型

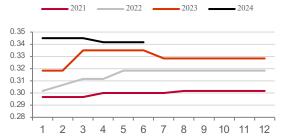
·											
云南421工业硅成本模型											
4	类别	单耗/吨	单价/元	成本/元	占比						
能源类别	电/Kwh	13000	0.44	5688	40%						
	硅石/t	3	420	1260	9%						
	石油焦/t	0.65	1650	1073	8%						
原料消耗	洗精煤/t	0.66	1875	1238	9%						
(含运费)	木炭/t	0. 5	3250	1625	11%						
	木片/t	0.4	550	220	2%						
	电级/t	0.08	15200	1216	9%						
维力	炉费用	1	625	625	4%						
人	工成本	1	400	400	3%						
三费(财务、	管理、销售费用)	1	410	410	3%						
设名	备折旧	1	420	420	3%						
税费 (环保和	兑、水资源费)	1	105	105	1%						
4	合计			14279							
完全成	本折盘面			12829							
现金流	成本折盘面			10869							
现金成本(人工	+三费+税)折盘面			11784							


	四,	川421工业硅厂	战本模型	•	
	类别	单耗/吨	单价/元	成本/元	占比
能源类别	电/Kwh	13000	0.36	4664	33%
	硅石/t	3	570	1710	12%
	石油焦/t	0			
原料消耗	洗精煤/t	1.9	1875	3563	25%
(含运费)	木炭/t	0			
	木片/t	0.8	550	440	3%
	电级/t	0.1	15200	1520	11%
维	护费用	1	625	625	4%
人	工成本	1	600	600	4%
三费(财务、	管理、销售费用)	1	410	410	3%
设	备折旧	1	420	420	3%
税费(环保	税、水资源费)	1	105	105	1%
	合计			14056	
完全」	成本折盘面			12456	
现金流	.成本折盘面			10296	
观金成本 (人)	L+三费+税)折盘面			11411	

	新疆伊犁	地区421工业	:硅成本模型		
	类别	单耗/吨	单价/元	成本/元	占比 38%
能源类别	电/Kwh	13500	0.34	4613	
	硅石/t	3	475	1425	7%
	石油焦/t	0.3	1540	462	2%
原料消耗	洗精煤/t	1. 2	2000	2400	6%
(含运费)	木炭/t	0	3250	0	0%
	木片/t	0.3	550	165	0%
	电级/t	0.08	15200	1216	3%
维	护费用	1	200	200	0%
人	工成本	1	800	800	2%
三费(财务、	管理、销售费用)	1	300	300	1%
设	备折旧	1	600	600	1%
税费 (环保	税、水资源费)	1	0	0	0%
	合计			12180.5	
完全,	成本折盘面			11231	
现金流	成本折盘面			10131	
见金成本 (人)	L+三费+税) 折盘面			10431	

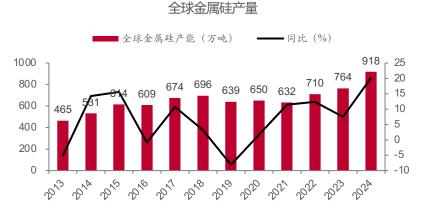


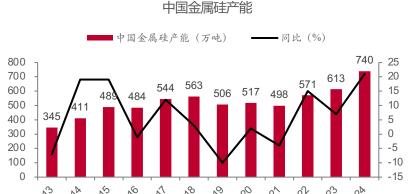


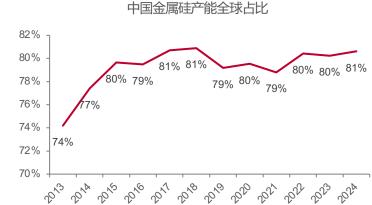

四川地区平均电价(元/kWh)

新疆伊犁421成本占比

新疆地区平均电价(元/Kwh)


- ◆ 工业硅生产过程中的成本结构包含电力成本、 还原剂成本、硅石成本、电极成本、人工成 本、折旧成本以及其他费用。不同生产企业 的成本由于各自电价、原料以及技术工艺的 差异而各不相同。
- ◆ 6月云南421折盘面现金成本10869元/吨;四 川421折盘面现金成本10296元/吨;新疆伊犁 421折盘面折盘面现金成本10131元/吨
- ◆ 丰水期云南、四川电价降低,每度电降低0.1 元,工业硅成本下降约1300元


数据来源:公开资料整理、SMM、创元研究


1.6 工业硅产能

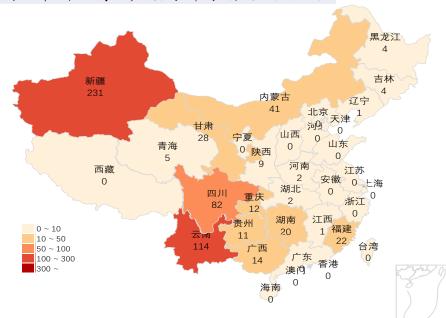
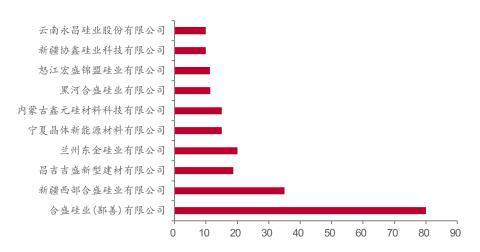

图:金属硅年度产能(万吨)

图:中国金属硅产能分布分省份(万吨)


- ◆ 2013-2024年期间,全球工业硅产能从465万吨/年增加至918万吨/ 年,中国工业硅产能从345万吨/年增加至740万吨/年,中国工业 硅产能全球占比80%左右
- ◆ 我国工业硅产能主要分布在电力资源充沛的西北、西南地区,依 托于丰富的煤电、水电资源,新疆、云南、四川等省份产能优势 明显
- ◆新疆、云南、四川、内蒙地区产能占比分别为38%,19%,13%, 7%,合计占比77%

1.6 工业硅产能

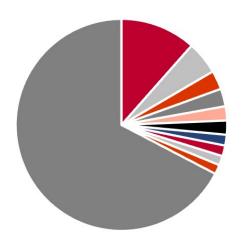
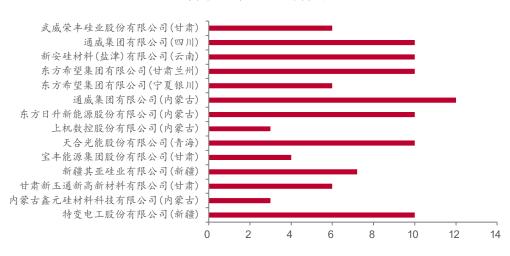


图:中国金属硅产能分企业(万吨)

2024年中国工业硅产能Top10



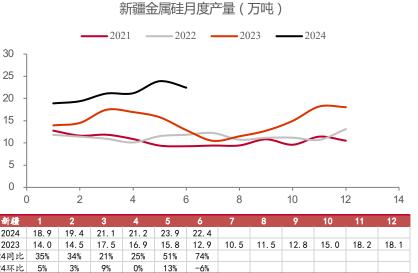
2024年中国工业硅产能分企业

- 合盛硅业(鄯善)有限公司
- ■新疆西部合盛硅业有限公司
- 兰州东金硅业有限公司
- ■昌吉吉盛新型建材有限公司
- ■内蒙古鑫元硅材料科技有限公司
- □ 宁夏晶体新能源材料有限公司
- 黑河合盛硅业有限公司
- ■黑河合盛柱业有限公司
- ■怒江宏盛锦盟硅业有限公司
- ■新疆协鑫硅业科技有限公司
- 云南永昌硅业股份有限公司
- ■其它

中国2024年工业硅新增产能

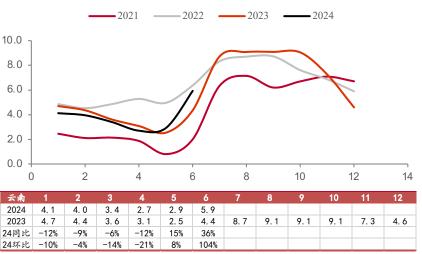
- ▶ 2024年中国工业硅总产能700多万吨,24年新增产能约100多万吨
- ◆ 中国工业硅生产龙头为合盛硅业, 其现有产能超过100万吨
- ◆ 24年新增产能内蒙古地区最多,由于涉疆法案的存在,近两年内蒙古地区新投产产能较多,内蒙古目前为我国工业硅第四大产区

2.1 工业硅产量



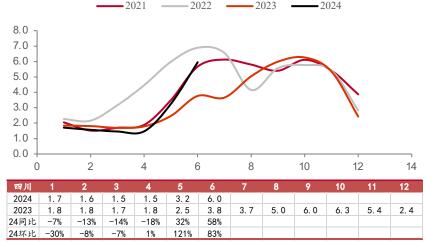
- ◆ 2018-2023年期间,全球金属硅产量从377万吨增加至525万吨,2024年预计全球金属硅产量638万吨,同比增长14%
- ◆ 中国工业硅产量全球占比逐步提高,23年中国占比82%
- ◆ 2018-2023年期间,中国金属硅产量从267万吨/年增加至380万吨,2024年预计中国金属硅产量456万吨,环比增长20%
- ◆ 2023年中国新疆、内蒙、甘肃地区产量呈上升趋势,云南四川地区产量略降
- ◆ 2023年中国工业硅产量以553和421为主,分别占比43%和36%,合计80%
- ◆ 2024年中国工业硅产量逐步上升, 1-6月累计产量228万吨, 累计同比增34%

2.1 工业硅产量(四大产区)



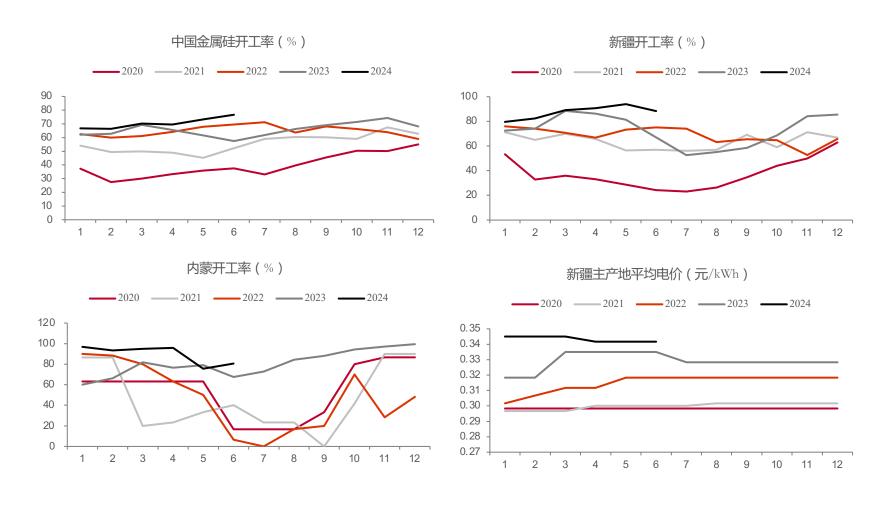
- ◆ 2024年1-6月新疆产区工业硅产量127 万吨,累计同比增长39%,6月产量 22.4万吨,同比+74%,环比-6%
- ◆ 2024年1-6月云南产区工业硅产量24万吨,累计同比增长2%,6月产量5.9万吨,同比+36%,环比+104%
- ◆ 2024年1-6月四川产区工业硅产量15.4 万吨,累计同比增长15%,6月产量6.0 万吨,同比+58%,环比+83%
- ◆ 2024年1-6月内蒙产区工业硅产量18.8 万吨,累计同比增长44%,6月产量3.8 万吨,同比+106%,环比+18%

云南金属硅月度产量(万吨)



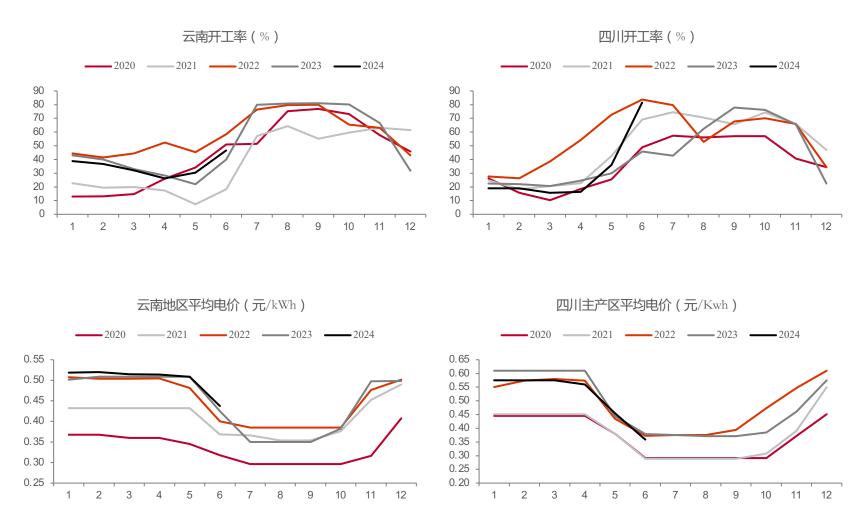
四川金属硅月度产量(万吨)

-3%


13%

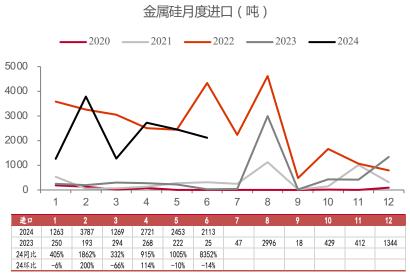
-2%

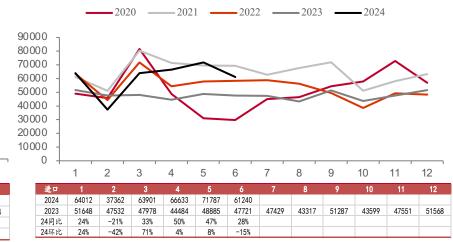
2.2 工业硅开工率



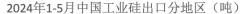
- ◆ 2024年全国金属硅开工率整体呈上升趋势,6月全国开工率77%
- ◆ 新疆地区使用火电, 且部分厂家有自备电厂, 电价波动较小, 整体开工平稳

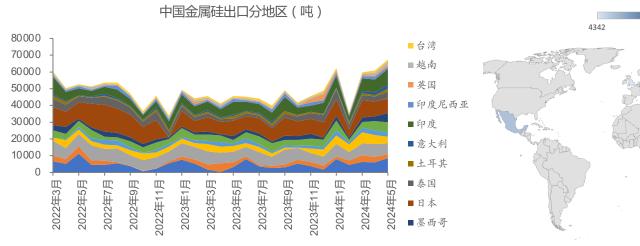
2.2 工业硅开工率

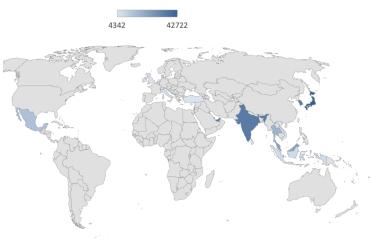


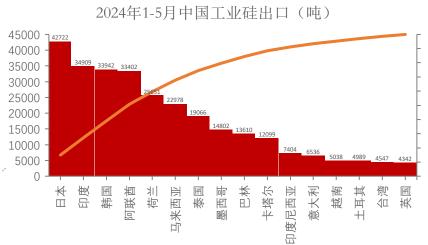

- ◆ 云南使用水电,丰水期 (5-11月份), 枯水期12月-次年4月
- ◆ 四川使用水电,丰水期6月—10月,枯水期1月—4月、12月,平水期5月、11月
- ◆ 云南、四川地区开工存在明显的季节性

2.3 工业硅进出口

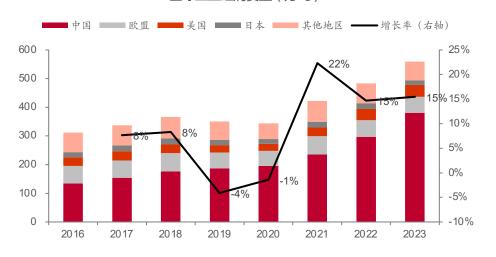





金属硅月度出口(吨)



- ◆ 中国金属硅以出口为主
- ◆ 2024年1-6月中国工业硅进口1.3万吨,出口36.5万吨,出口累计同比增27%
- ◆ 出口以亚洲地区为主,包括日本、印度、 韩国、阿联酋以及少量欧洲地区

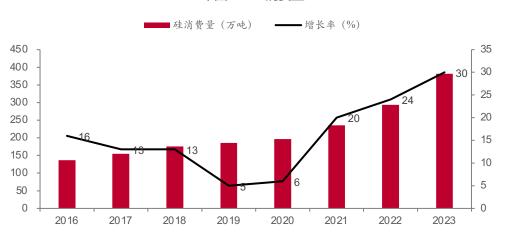


2.4 工业硅需求

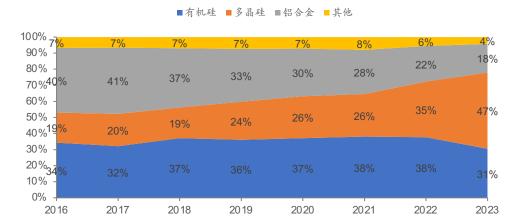
全球工业硅消费量(万吨)

全球主要地区硅消费占比

全球工业硅供需平衡

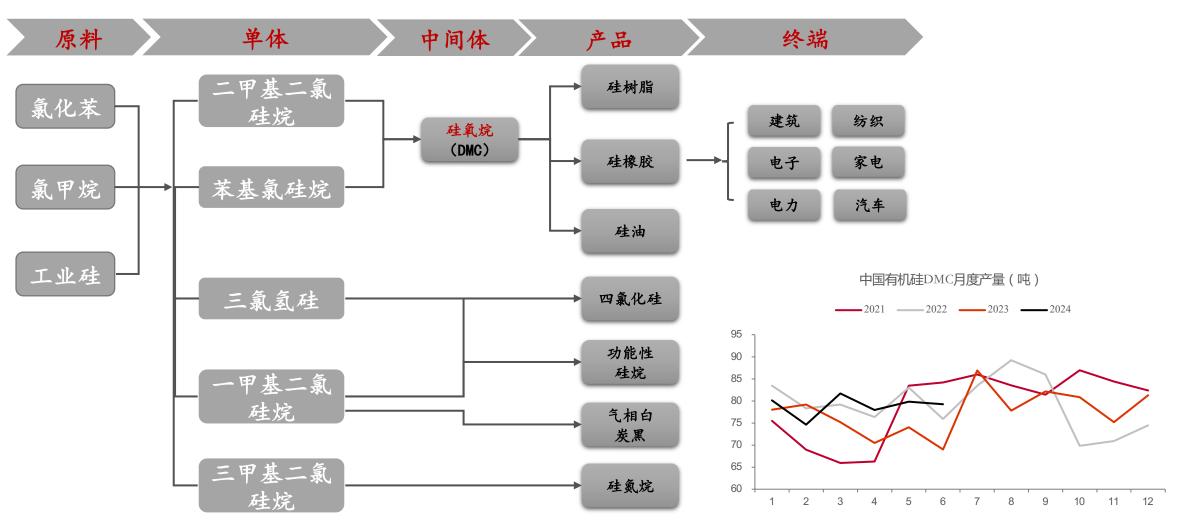


- ◆ 2016年全球工业硅消费量313万吨,2023年全球工业硅消费量559万吨,年化平均增长率8.64%,2023年同比增长15%,趋势上看目前需求增速尚在提升 ◆ 中国在全球硅消费中的占比逐年增加,从2016年的约45%增长到2023年的接
- ◆ 中国在全球硅消费中的占比逐年增加,从2016年的约45%增长到2023年的接近70%


2.4 工业硅需求

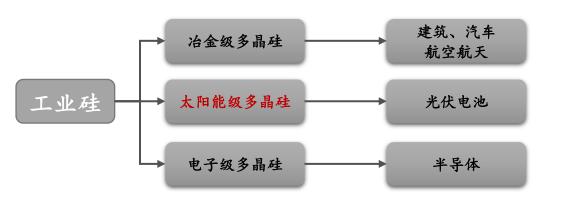
中国工业硅消费量

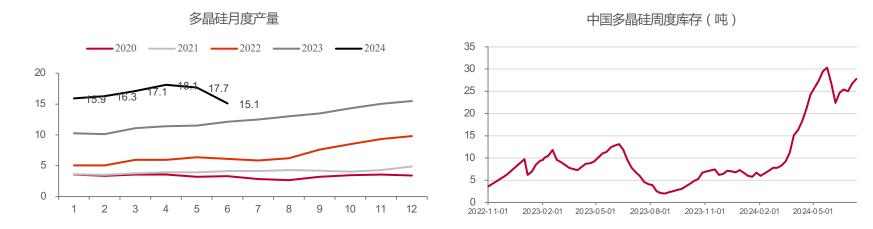
中国硅需求占比分下游消费


中国硅需求分下游消费

- ◆ 2016年中国工业硅消费量136.8万吨,2023年中国工业硅消费量381.4 万吨,年化平均增长率15.8%,2023年同比增长30%
- ◆ 从2016年至2023年,中国硅的下游需求中多晶硅的占比大幅上升, 而铝合金和有机硅的占比则有所下降
- ◆ 多晶硅的占比从19%上升至47%; 有机硅需求量在总体硅需求中的占比从34%下降至31%, 铝合金占比大幅下降, 从40%下降至18%, 其他的需求占比变化不大

2.4 工业硅需求——有机硅




- ◆ 有机硅产业链中,下游产品几乎都经过硅氧烷环节
- ◆ 生产一吨硅氧烷 (DMC) 大概消耗0.52吨工业硅
- ◆ 2024年1-6月国内生产DMC473万吨,累计同比增6%,DMC需求增速较为缓慢

2.4 工业硅需求——多晶硅

◆ 电子级多晶硅硅含量在99.9999%以上,太阳能级多晶硅硅含量在99.99%-99.999%之间,冶金级多晶硅对硅含量要求较低,目前多晶硅下游光伏电池需求占主导地位

- ◆ 2024年中国多晶硅产量维持高增速,1-6月国内多晶硅产量100万吨,累计同比增长51%,6月产量15.1万吨,同比+24%,环比-15%
- ◆ 由于下游光伏需求不及预期,多晶硅库存呈上升趋势,截至7/19,多晶硅库存23.5万吨,库存今年累库约17万吨

2.5 工业硅平衡

中国硅	:平衡(万吨)	2023年1月	2023年2月	2023年3月	2023年4月	2023年5月	2023年6月	2023年7月	2023年8月	2023年9月	2023年10月	2023年11月	2023年12月	2024年1月	2024年2月	2024年3月	2024年4月	2024年5月	2024年6月
供给	金属硅产量	27. 4	28. 1	31. 3	29. 1	27. 1	26. 5	28. 3	32. 1	35. 6	39. 3	40. 3	35.0	34. 6	34. 5	36. 6	35. 9	40.8	45. 3
	再生硅产量	1.4	1.8	1. 9	2. 0	2. 0	2. 0	2. 1	2. 2	2. 2	2. 1	2. 2	2. 2	1. 9	1.4	2. 1	2. 0	2. 1	1. 9
	97硅产量	2. 9	2. 3	2. 5	2. 2	1.8	1.5	1.4	1.6	2. 0	2. 0	2. 2	2. 1	2. 1	2. 3	2. 8	3. 4	3. 7	3. 1
D1 26	进口	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0. 0	0.0	0. 1	0. 1	0.4	0. 1	0.3	0. 2	0. 2
	供给合计	31.7	32. 2	35. 7	33. 3	30. 9	30.0	31. 7	36. 2	39. 8	43. 4	44. 7	39. 4	38. 7	38. 5	41. 6	41. 6	46. 8	50.5
	供给环比增速		1. 6%	10.6%	-6.8%	-7. 2%	-2.9%	5. 8%	14. 1%	10.0%	8.9%	3.0%	-11.9%	-1.6%	-0.6%	8. 0%	-0.1%	12. 6%	7. 9%
	多晶硅需求	11.8	11.6	12. 8	13. 1	13. 2	13. 9	14. 4	15. 0	15. 5	16. 4	17. 3	17.8	18. 3	18. 7	19. 7	20. 8	20. 4	17. 4
	DMC需求	8. 5	9.3	8.8	8. 2	8. 6	8. 1	10. 2	9. 2	9.7	9. 7	9. 0	10.1	10.0	9.3	10. 2	9.7	10.8	10. 7
需求	铝合金需求	5. 8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5. 8	5. 8	5.8	5.8	5.8	5.8	5.8	5. 8	5. 8
而小	出口	5. 2	4. 8	4. 8	4. 4	4. 9	4. 8	4. 7	4. 3	5. 1	4. 4	4. 8	5. 2	6. 4	3. 7	6. 4	6. 7	7. 2	6. 1
	需求合计	31.3	31.4	32. 1	31. 6	32. 6	32. 6	35. 2	34. 3	36. 1	36. 3	36. 9	38.8	40.4	37. 6	42. 0	43. 0	44. 1	40.0
	需求环比增速		0.4%	2. 2%	-1.7%	3. 1%	0.0%	8.0%	-2.6%	5.5%	0.5%	1. 6%	5.3%	4. 2%	−7. 1%	11. 9%	2.3%	2.6%	-9.3%
	供需差	0. 4	0.8	3.5	1. 7	-1.7	-2.6	-3.5	1. 9	3. 7	7. 1	7. 8	0.5	-1.7	1. 0	-0.4	-1.4	2. 7	10.5

广期所工业硅仓单库存(吨)

◆ 月度平衡看,由于丰水期原因,国内工业硅8-11月份产量处于高位,整体过剩幅度较大,24年6月工业硅开始出现大幅过剩

2024.01.20 2023,7220

2022,120

◆ 库存方面,广期所仓单库存增长至33万吨,算上厂库和港口库存超过50万吨,整体库存偏高

50000

3 总结

基础知识

- ◆工业硅又称金属硅、按照准金属硅中铁、铝、钙的含量、可把金属硅分为553、421等不同的牌号。
- ◆ 工业硅下游主要分有机硅、多晶硅、铝合金
- ◆ 工业硅的冶炼主要在电炉中进行,通过高温将硅石还原为硅
- ◆ 工业硅生产过程中的成本结构包含电力成本、还原剂成本、硅石成本、电极成本、人工成本、折旧成本以及其他费用。 不同生产企业的成本由于各自电价、原料以及技术工艺的差异而各不相同

基本面

- ◆中国目前工业硅产能740万吨/年,产能全球占比80%左右,新疆、云南、四川、内蒙地区产能占比分别为38%,19%,13%,7%,合计占比77%
- ◆ 2023年中国工业硅产量380万吨, 2024年预计产量456万吨, 环比增长20%, 以553和421为主, 分别占比43%和36%, 合计80%
- ◆6月全国开工率77%,新疆地区整体开工平稳,云南、四川地区开工存在明显的季节性
- ◆中国金属硅以出口为主,2024年1-6月中国工业硅进口1.3万吨,出口36.5万吨,出口累计同比增27%,出口以亚洲地区为主
- ◆中国硅的下游需求中多晶硅(47%)的占比大幅上升,而铝合金(18%)和有机硅(34%)的占比则有所下降
- ◆ 24年6月工业硅开始出现大幅过剩, 国内工业硅库存超过50万吨, 整体库存偏高

【免责申明】本研究报告仅供创元期货股份有限公司(以下简称"本公司")的客户使用。本 报告是基于本公司分析师认为可靠且已公开的信息,本公司力求但不保证这些信息的准确性和 完整性, 也不保证文中观点或陈述不会发生任何变更, 在不同时期, 本公司可发出与本报告所 载资料、意见及推测不一致的报告。在任何情况下,本报告中的信息或所表述的意见并不构成 对任何人的投资建议, 本公司不对任何人因使用本报告中的内容所导致的损失负任何责任。本 报告的版权归本公司所有, 未经书面许可, 任何机构和个人不得以任何形式翻版、复制和发布。 如引用、刊发,需征得创元期货股份有限公司同意,且不得对本报告进行有悖原意的引用、删 节和修改,否则由此造成的一切不良后果及法律责任由私自翻版、复制、刊登、转载和引用者 承担。

翎翎称称